If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6d^2+28d+30=0
a = 6; b = 28; c = +30;
Δ = b2-4ac
Δ = 282-4·6·30
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-8}{2*6}=\frac{-36}{12} =-3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+8}{2*6}=\frac{-20}{12} =-1+2/3 $
| 25=(x/25)×100 | | (2x+5)+(3x-10)=180 | | 2^2x-6×2^x=16 | | x2+40x+400=0 | | -35=-4x+6x | | X^2-41x+49=0 | | 3y+34=27+89 | | 2d+5d=6 | | 7n+4-9n=-20 | | 43-2k=10k+19 | | 2x(3)=4 | | 17^2+x^2=28^2 | | 2x-8=3(x-3)-2 | | Y=50x+300 | | x³-2x-45=0 | | 6x-64=3x-1 | | 44-5x=2x+16 | | 0.8/90=5/6/y | | -46-4v=-12v+10 | | 6-5(1+9b)=-21 | | 7(2x-2)=10(2x+4) | | 0=-4.9t^2+17t | | 2x+16=-16 | | 13-9=19-16=x | | 113-6x=20x+9 | | 31=8x+7 | | 9(2z-6)=-33 | | Y=-4/7x-6x=-2 | | 15n-19=17n-23 | | 120-10k=6k+8 | | -2y+7-5=-17 | | 7(2x+4)=10(2x+4) |